El misterio de la formación de un magnetar, ¿resuelto?
15/5/2014 de ESO
Impresión artística del magnetar en el cúmulo estelar Westerlund 1. Crédito: ESO/L. Calçada
Los magnetares son los extraños remanentes superdensos de explosiones de supernovas. Son los imanes más potentes conocidos en el universo — millones de veces más potentes que los imanes más fuertes de la Tierra. Utilizando el telescopio VLT (Very Large Telescope) de ESO, un equipo de astrónomos europeos cree haber hallado, por primera vez, a la estrella compañera de un magnetar. Este descubrimiento ayuda a explicar cómo se forman los magnetares — un enigma de hace 35 años — y por qué esta estrella particular no colapsó en agujero negro tal y como esperarían los astrónomos.
Cuando una estrella masiva colapsa por su propia gravedad durante una explosión de supernova, puede formar, o bien una estrella de neutrones o un agujero negro. Los magnetares son una forma inusual y muy exótica de estrella de neutrones. Como todos estos objetos extraños, son pequeños y extraordinariamente densos — una cucharadita de materia de estrella de neutrones tendría una masa de aproximadamente mil millones de toneladas — pero también tienen campos magnéticos extremadamente potentes. Las superficies de los magnetares liberan grandes cantidades de rayos gamma cuando atraviesan una etapa de ajuste repentino, conocida como un terremoto estelar (starquake), consecuencia de las enormes tensiones que tienen lugar en sus cortezas.
El cúmulo estelar Westerlund 1, situado a 16.000 años luz de la Tierra, en la constelación austral de Ara (el Altar), alberga uno de las dos docenas de magnetares conocidos en la Vía Láctea.
“En nuestro anterior trabajo demostramos que el magnetar del cúmulo Westerlund 1 debe haber nacido de la explosiva muerte de una estrella con unas 40 veces la masa del Sol. Pero este hecho representa un problema en sí mismo, ya que se supone que, tras morir, las estrellas tan masivas colapsan para formar agujeros negros, no estrellas de neutrones. No entendíamos cómo podía haberse transformado en magnetar”, afirma Simon Clark, autor principal del artículo que plasma estos resultados.
Los astrónomos propusieron una solución a este misterio. Sugirieron que el magnetar se formó por las interacciones de dos estrellas muy masivas en órbita una en torno a la otra, en un sistema binario tan compacto que encajaría dentro de la órbita de la Tierra alrededor del Sol. Pero, hasta ahora, no se había detectado ninguna estrella acompañante en la ubicación del magnetar en Westerlund 1, así que los astrónomos utilizaron el VLT para buscarlo en otras partes del cúmulo. Buscaron estrellas fugitivas — objetos que escapan del cúmulo a grandes velocidades — que podría haber sido expulsadas de la órbita por la explosión de supernova que formó al magnetar. Se descubrió que una estrella, conocida como Westerlund 1-5, parecía encajar perfectamente con lo que buscaban.
Por tanto, en la receta para formar un magnetar, parece que un ingrediente fundamental es ser una de las componentes de una estrella doble. La rápida rotación generada por la transferencia de masas entre las dos estrellas parece necesaria para generar el campo magnético ultra fuerte y, posteriormente, una segunda fase de transferencia de masa permite al futuro magnetar adelgazar lo suficiente como para no colapsar en agujero negro en el momento de su muerte.