El impacto de la misión DART excavó más de cinco millones de kilos de material en el asteroide Dimorfo
2/3/2023 de Instituto de Astrofísica de Andalucía (IAA-CSIC) / Nature
El 27 de septiembre de 2022, la misión DART (NASA) colisionó contra su objetivo, el asteroide Dimorfo, y cambió su órbita. Se trataba de la primera misión de prueba de defensa planetaria diseñada para cambiar el curso de un asteroide, y su éxito fue seguido por el análisis intensivo de la colisión, que incluye el estudio de las toneladas de roca que fueron desplazadas y lanzadas al espacio. Los resultados de este análisis se publican hoy en cuatro artículos en Nature, uno de los que cuenta con una destacada participación del Instituto de Astrofísica de Andalucía (IAA-CSIC).
La misión DART (acrónimo en inglés de Prueba de Redireccionamiento de Asteroide Doble) buscaba demostrar la utilidad del método de impacto cinético para desviar asteroides potencialmente peligrosos sin emplear cargas explosivas. Su objetivo, situado a once millones de kilómetros de la Tierra, era el satélite Dimorfo, de unos 160 metros de diámetro, que orbita en torno al asteroide Dídimo (de 780 metros de diámetro), formando un sistema binario. El impacto de la nave, que viajaba a unos seis kilómetros por segundo, desvió la órbita de Dimorfo y acortó su periodo de traslación respecto a Dídimo en más de media hora, lo que constituyó un éxito del proyecto.
“Sin embargo, quedaban otros muchos otros aspectos por estudiar, en particular en lo que concierne a la caracterización del material eyectado tras la colisión –señala Fernando Moreno, investigador del IAA-CSIC que participa en el estudio–. Así, desde el mismo momento del impacto y hasta varios meses después, el telescopio espacial Hubble (HST) ha tomado imágenes de ese material y caracterizado su evolución. Aunque una parte del material consiste en partículas expulsadas a alta velocidad, a varios cientos de metros por segundo, y que desaparece del campo de visión de las cámaras rápidamente, hemos podido observar la componente de baja velocidad”.
En este trabajo se presenta un estudio fundamentalmente morfológico de la evolución de ese material, que ha permitido determinar la compleja interacción entre el sistema de asteroides y el polvo bajo la acción de la presión de radiación producida por la luz solar.
“Esta presión de radiación aleja las partículas micrométricas a distancias de varios miles de kilómetros en un par de días, mientras que las partículas más grandes, expulsadas a velocidades cercanas a la velocidad de escape del sistema (de unos cuarenta centímetros por segundo) muestran movimientos espirales alrededor del sistema y una complicada evolución con el paso de los días. Vemos, por ejemplo, la aparición de una cola doble, que podría estar relacionada con el reimpacto de una porción de las partículas más grandes emitidas (boulders) sobre la superficie de Dídimo, o bien con la desintegración de esos mismos boulders debido a una alta velocidad de rotación o por efecto de colisiones mutuas”, indica Fernando Moreno (IAA-CSIC).
[Fuente]